
530.646: Robot Devices Kinematics, Dynamics, and Control
Final Project: Control Algorithms for UR5

Spencer Witte, Peiyao Zhang, Daniel Hsu

1. Deliverables
● Submit ​a single zip file​ titled “FinalProject TeamNumber MemberInitials” to the

blackboard, which includes a main script called ur5 project.m. In this script, the user should
be able to choose the method of control: IK-based, DK-based, or gradient-based.

● A ​PDF report​ specifying your algorithm (workflow), experimental results, workload
distribution, and all other important considerations.

● We will set up a​ demo​ time (see the poll), so that each team show their output to the
instructor and the TAs.

2. Objective
The objective of the project is to demonstrate the effectiveness of using 3 different types of
control algorithms (Inverse Kinematics, Resolve Rate, Gradient based) in executing a
place-and-mark-with-intention task.

3. Workflow
a. Preparation

1. ur5 initializes to home position.
2. Move arm to start cup, record position in MATLAB
3. Move arm to target cup, record position in MATLAB
4. Calculate intermediate position, add vertical offset
5. Define vertical offset to cup
6. Define gesture movement
7. User inputs which controller they want to use via
command window

b. Moving the Arm

8. Return to intermediate position before starting.
9. Gesture towards the start cup
10. Move to a vertical offset above the start cup using
specified control algorithm
11. Move down to draw the dot
12. Move to a vertical asset above the target cup using
specified control algorithm
13. Move down to draw the dot
14. Return to intermediate position

4. Control Algorithms in Detail
a. Inverse Kinematics - Daniel Hsu

The inverse kinematics algorithm has already been provided to us. To implement it for
our application, we wrote the IK_based.m code that takes into a transformation ​g ​and
outputs the corresponding joint configuration of the end effector. Since the provided
inverse kinematics algorithm returns all 8 possible configurations, we decided to
choose the one that is closest its current position (by finding the min() of the norm of
the target and current positions).

b. Differential Kinematics (Resolved-Rate Control) - Spencer Witte

The controller consists of a loop that iteratively calculates the desired joint velocities
and computes the joint positions one time step ahead by using the inverse Jacobian. The
controller also checks to see if the new joint angles cause a singularity issue, and if not,
commands the robot to move to that position. The constant K is the gain constant.
Smaller values of K will increase precision of the arm but decrease the speed, and larger
values of K will increase the speed of the arm but decrease precision. Additionally,
threshold values were coded into the controller to determine if the arm had reach its
goal position, and could be tuned to increase the precision. If our code did not have
singularity detection, some of the joint velocities would become very large when the
arm moved near the singularity configuration.

c. Gradient-based (Transpose Jacobian) - Peiyao Zhang

The gradient-based transpose jacobian method is based on the one discussed in the
1988 paper [3]. In theory, the transpose jacobian approach should be less
computationally expensive than the differential kinematics (which uses the inverse
jacobian) and should be able to apply to any type of robot regardless of its geometry
compared to the differential kinematics approach (jacobian may not have inverse but
always have transpose). The algorithm is implemented in Dr_based.m which is
essentially identical to DK_based.m except that the inv(J) is changed to transpose(J) and
tuned with slightly different parameters.

5. Experimental Results
We were able to successfully implement all three controllers to perform the “pick and mark
with intention” task using the positions we “teach” the UR5 arm.

Below is a table that shows how long it took for our controllers to execute their motion. Note
this was done with chosen start and target positions and would produce different results with
different positions.

Below are photos showing each stage of the arms movement.

Figure 2 : teaching positions (start cup left photo, target cup right photo)

Figure 3 : (left) home position (middle) intermediate position (right) gesture towards start

Figure 4 : (left) offset from start (middle) moves down to mark (right) moves back to

intermediate

Figure 5 : (left) gesture towards end (middle) offset from end(right) moves down to mark

6. Discussion & Conclusion

Despite the success of our control algorithms in achieving the place-and-mark-with-intention
task, we believe there are a few improvements that can be made. First we noticed that in the
differential kinematics based controller and gradient based controller “stutters” as it moves.
We believe this is because these controller are iterative methods where the controller
calculates several waypoints along the path to its goal position and uses the move_joint
command to drive the arm to each waypoint. The “stuttering” occurs because the move_joint
command is motion profiled and decelerates and stops at each waypoint. The motion profile is
depicted in​ figure_ ​below. This could be solved for by using a function that does not have the
motion profiling implemented in the command, however, we would then want to implement it
into our controller.

Figure 6 : ur5 speed profile for a motion [1]

The second thing we noticed was that the gradient controller was very slow. It may be possible
to speed it up with further tuning, however, we were having trouble tuning it to be faster.

7. Extra Credit
For extra credit, we decided to apply our control algorithm to a drawing task. The robot (with
a marker attached at the end effector) is moved to the starting location manually such that the
marker is in contact with a piece of paper taped on the table. Then we apply the
inverse-kinematics controller to draw a star and a circle around it. We seperated the circle
into 30 segments to find a balance between the drawing time and the smoothness of the circle.
The drawing result is attached below.

Figure 7 : extra credit task in progress

Figure 8 : drawing result

Figure 9 : end effector setup

8. File Directory
Provided:

ur5_interface.m: ur5 member functions
tf_frame.m: maintain a frame in tf in ROS
ur5InvKin.m: Ryan Keating’s inverse kinematics solution [2]
ur5BodyJacobian.m: calculates body jacobian

Important functions:
ur5_project.m: main function to run
IK_based.m: inverse-kinematics algorithm
DK_based.m: differential kinematics algorithm (resolved-rate)
gradient_based.m: ​gradient-based algorithm
runController.m: runs either of the 3 control algorithm based on user input

ur5​fwdKin.m: forward kinematics
manipulability.m: calculates and warns user when near singularity

Helper functions:

SKEW3.m: transform 3x 1 vector into 3 x 3 skew-symmetric matrix
getXi.m: outputs twist coord. corresponding to a homog. transformation
ROTX.m ROTY.m ROTZ.m​ : rotation matrices

9. References
[1] ​ur5 User Manual (​https://www.usna.edu/Users/weapron/kutzer/_files/documents/
User%20Manual,%20UR5.pdf​)
[2] Ryan Keating, UR5 Inverse Kinematics. 2014
[3] Chiacchio, Pasquale, and Bruno Siciliano. "A closed-loop jacobian transpose scheme for
solving the inverse kinematics of nonredundant and redundant wrists." Journal of Robotic
Systems 6.5 (1989): 601-630.

https://www.usna.edu/Users/weapron/kutzer/_files/documents/User%20Manual,%20UR5.pdf
https://www.usna.edu/Users/weapron/kutzer/_files/documents/User%20Manual,%20UR5.pdf

